Parameter Learning for CRF-Based Tissue Segmentation of Brain Tumors

نویسندگان

  • Raphael Meier
  • Venetia Karamitsou
  • Simon Habegger
  • Roland Wiest
  • Mauricio Reyes
چکیده

In this work, we investigate the potential of a recently proposed parameter learning algorithm for Conditional Random Fields (CRFs). Parameters of a pairwise CRF are estimated via a stochastic subgradient descent of a max-margin learning problem. We compared the performance of our brain tumor segmentation method using parameter learning to a version using hand-tuned parameters. Preliminary results on a subset of the BRATS2015 training set show that parameter learning leads to comparable or even improved performance. Future work will include training on the complete data set and the use of more elaborate loss functions suitable for brain tumor segmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of brain tumor using PNN neural networks

Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A deep learning model integrating FCNNs and CRFs for brain tumor segmentation

Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis, treatment planning, and treatment outcome evaluation. Build upon successful deep learning techniques, a novel brain tumor segmentation method is developed by integrating fully convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs) in a unified framework to obtain segmentation results ...

متن کامل

On Parameter Learning in CRF-Based Approaches to Object Class Image Segmentation

Recent progress in per-pixel object class labeling of natural images can be attributed to the use of multiple types of image features and sound statistical learning approaches. Within the latter, Conditional Random Fields (CRF) are prominently used for their ability to represent interactions between random variables. Despite their popularity in computer vision, parameter learning for CRFs has r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015